wiki

Latest News

UMN listed among the top 20 robotics engineering schools

April 25, 2016

The University of Minnesota - Twin Cities has been identified as having one of the top robotics engineering schools in the United States for 2016.
read the article

Dr. Nikos Papanikolopoulos Receives George Saridis Leadership Award

February 3, 2016

Professor Nikolaos Papanikolopoulos was honored with the George Saridis Leadership Award in Robotics and Automation from the Institute of Electrical and Electronics Engineers' (IEEE) Robotics & Automation Society (RAS). The award recognizes outstanding contributions of an individual for his or her exceptional leadership, innovation and dedication that benefit the Robotics and Automation commun
read the article

U of M Student Robot Helps Detect Autism Signs

April 24, 2015

Josh Fasching is researching how robots and sensor technology can help in the medical world, particularly detecting behaviors associated with autism. "Head nodding, hand flapping, ear covering, also hand ringing behaviors is another one," Fasching said of the behaviors the robots would be able to detect.
read the article

University Professor uses robots in medicine, agriculture

April 7, 2015

Department of Computer Science and Engineering professor Nikolaos Papanikolopoulos is developing robot and sensor technology to detect visual cues that could determine if a child has autism or a farmer needs to fertilize a certain area of crops.
read the article

Researchers 'Kinect' data to make faster diagnoses

March 10, 2015

The Xbox Kinect has become a U tool for diagnosing mental disorders in children.
read the article

The Loper

The Loper is a versatile robotic platform designed for operation in a number of indoor and outdoor environments that would be common in the tasks at hand. The Loper is able to operate in these environments due to the combination of four novel Tri-lobe wheels, each of which is coupled to a high torque AC servo actuator mounted in a highly compliant chassis.

More
v

Demo

Further Description

The robots used for environmental monitoring must be capable of functioning in a number of environments that may be difficult for humans to operate. In addition to crossing diverse terrain (e.g., tall grass, sand, gravel, etc.), these robotic systems must be able to overcome man-made structures such as fences, etc. They must be able to carry significant processing and sensing equipment and power to maintain the system for prolonged operation.

The Hybrid robot was developed with obstacle scaling in mind. It is loosely based on the two-wheeled Scout line of robots, but with the addition of a rotary-wing flight mode. This makes it a two-wheeled ground robot that transforms into a helicopter. The flight mode utilizes two coaxial, counter-rotating rotors. A stabilizer bar linked to the upper rotor rejects disturbances and improves controllability.

The Loper is a versatile robotic platform designed for operation in a number of indoor and outdoor environments that would be common in the tasks at hand. The Loper is able to operate in these environments due to the combination of four novel Tri-lobe wheels, each of which is coupled to a high torque AC servo actuator mounted in a highly compliant chassis. The Loper is capable of a maximum sustained speed on level terrain of 8 km/h and can climb stairs at a rate of 6 steps/second. However, for safety purposes this speed is restrained to approximately 3 km/h and 3 steps/second. In other terms, this maximum speed is equivalent to travelling 4.3 body lengths per second which significantly out-paces other similar robot platforms.

The goal of the Loper"s design is to provide resources for (semi)-autonomous operation in a platform that could overcome the limitations of the aforementioned environments. At first glance, the Loper"s Tri-lobe wheels are similar in function to the spokes of the "Mini-Whegs", however, they actually use an active control scheme with independently driven motors similar to RHex. This enables multiple gaits that can not be achieved with the "Mini-Whegs" platform. The shape of the Tri-lobe wheels is similar to those found on MSRox, however, the Trilobe wheels lack the additional wheels found at each spoke of the MSRox.

Publications

Sam D. Herbert, Andrew Drenner, and Nikolaos Papanikolopoulos, "Loper: A Quadruped-Hybrid Stair Climbing Robot" Proceedings of the 2008 IEEE Conference on Robotics and Automation, Pasadena, CA, May 19-23, 2008.